Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.

Identifieur interne : 003B86 ( Main/Exploration ); précédent : 003B85; suivant : 003B87

Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.

Auteurs : Aaron H. Liepman [États-Unis] ; C Joseph Nairn ; William G T. Willats ; Iben S Rensen ; Alison W. Roberts ; Kenneth Keegstra

Source :

RBID : pubmed:17307900

Descripteurs français

English descriptors

Abstract

Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.

DOI: 10.1104/pp.106.093989
PubMed: 17307900
PubMed Central: PMC1851810


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.</title>
<author>
<name sortKey="Liepman, Aaron H" sort="Liepman, Aaron H" uniqKey="Liepman A" first="Aaron H" last="Liepman">Aaron H. Liepman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197, USA. aliepman@emich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197</wicri:regionArea>
<wicri:noRegion>Michigan 48197</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nairn, C Joseph" sort="Nairn, C Joseph" uniqKey="Nairn C" first="C Joseph" last="Nairn">C Joseph Nairn</name>
</author>
<author>
<name sortKey="Willats, William G T" sort="Willats, William G T" uniqKey="Willats W" first="William G T" last="Willats">William G T. Willats</name>
</author>
<author>
<name sortKey="S Rensen, Iben" sort="S Rensen, Iben" uniqKey="S Rensen I" first="Iben" last="S Rensen">Iben S Rensen</name>
</author>
<author>
<name sortKey="Roberts, Alison W" sort="Roberts, Alison W" uniqKey="Roberts A" first="Alison W" last="Roberts">Alison W. Roberts</name>
</author>
<author>
<name sortKey="Keegstra, Kenneth" sort="Keegstra, Kenneth" uniqKey="Keegstra K" first="Kenneth" last="Keegstra">Kenneth Keegstra</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17307900</idno>
<idno type="pmid">17307900</idno>
<idno type="doi">10.1104/pp.106.093989</idno>
<idno type="pmc">PMC1851810</idno>
<idno type="wicri:Area/Main/Corpus">003C16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003C16</idno>
<idno type="wicri:Area/Main/Curation">003C16</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003C16</idno>
<idno type="wicri:Area/Main/Exploration">003C16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.</title>
<author>
<name sortKey="Liepman, Aaron H" sort="Liepman, Aaron H" uniqKey="Liepman A" first="Aaron H" last="Liepman">Aaron H. Liepman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197, USA. aliepman@emich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197</wicri:regionArea>
<wicri:noRegion>Michigan 48197</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nairn, C Joseph" sort="Nairn, C Joseph" uniqKey="Nairn C" first="C Joseph" last="Nairn">C Joseph Nairn</name>
</author>
<author>
<name sortKey="Willats, William G T" sort="Willats, William G T" uniqKey="Willats W" first="William G T" last="Willats">William G T. Willats</name>
</author>
<author>
<name sortKey="S Rensen, Iben" sort="S Rensen, Iben" uniqKey="S Rensen I" first="Iben" last="S Rensen">Iben S Rensen</name>
</author>
<author>
<name sortKey="Roberts, Alison W" sort="Roberts, Alison W" uniqKey="Roberts A" first="Alison W" last="Roberts">Alison W. Roberts</name>
</author>
<author>
<name sortKey="Keegstra, Kenneth" sort="Keegstra, Kenneth" uniqKey="Keegstra K" first="Kenneth" last="Keegstra">Kenneth Keegstra</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genome, Plant (MeSH)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Mannans (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Famille multigénique (MeSH)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Mannanes (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>RT-PCR (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mannans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mannanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Plant Physiological Phenomena</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Phénomènes physiologiques des plantes</term>
<term>RT-PCR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17307900</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>143</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1881-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liepman</LastName>
<ForeName>Aaron H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197, USA. aliepman@emich.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nairn</LastName>
<ForeName>C Joseph</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Willats</LastName>
<ForeName>William G T</ForeName>
<Initials>WG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sørensen</LastName>
<ForeName>Iben</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roberts</LastName>
<ForeName>Alison W</ForeName>
<Initials>AW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keegstra</LastName>
<ForeName>Kenneth</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008351">Mannans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008351" MajorTopicYN="N">Mannans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="Y">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17307900</ArticleId>
<ArticleId IdType="pii">pp.106.093989</ArticleId>
<ArticleId IdType="doi">10.1104/pp.106.093989</ArticleId>
<ArticleId IdType="pmc">PMC1851810</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Jun;4(3):219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11312132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):477-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Dec;214(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):336-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Apr;22(5):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Jan;91(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(3):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1602-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jun;19(6):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12801728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):640-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):376-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2003 Aug 12;338(17):1797-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1000-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Nov;218(1):27-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12844268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):363-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1080-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jul;65(13):1903-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Aug;219(4):590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Apr;107(4):1129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 18;284(5422):1976-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10373113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):907-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 31;311(5769):1872-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 31;311(5769):1940-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Oct;224(5):1091-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16649044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jan;63(2):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Oct;142(2):696-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Dec;9(6):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Sep;19(6):691-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Keegstra, Kenneth" sort="Keegstra, Kenneth" uniqKey="Keegstra K" first="Kenneth" last="Keegstra">Kenneth Keegstra</name>
<name sortKey="Nairn, C Joseph" sort="Nairn, C Joseph" uniqKey="Nairn C" first="C Joseph" last="Nairn">C Joseph Nairn</name>
<name sortKey="Roberts, Alison W" sort="Roberts, Alison W" uniqKey="Roberts A" first="Alison W" last="Roberts">Alison W. Roberts</name>
<name sortKey="S Rensen, Iben" sort="S Rensen, Iben" uniqKey="S Rensen I" first="Iben" last="S Rensen">Iben S Rensen</name>
<name sortKey="Willats, William G T" sort="Willats, William G T" uniqKey="Willats W" first="William G T" last="Willats">William G T. Willats</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Liepman, Aaron H" sort="Liepman, Aaron H" uniqKey="Liepman A" first="Aaron H" last="Liepman">Aaron H. Liepman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17307900
   |texte=   Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17307900" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020